## Run time: 2014-10-25 19:02:13
## R version: R version 3.0.2 (2013-09-25)
Background
Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
Data
The training data for this project are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.
What you should submit
The goal of your project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.
- Your submission should consist of a link to a Github repo with your R markdown and compiled HTML file describing your analysis. Please constrain the text of the writeup to < 2000 words and the number of figures to be less than 5. It will make it easier for the graders if you submit a repo with a gh-pages branch so the HTML page can be viewed online (and you always want to make it easy on graders :-).
- You should also apply your machine learning algorithm to the 20 test cases available in the test data above. Please submit your predictions in appropriate format to the programming assignment for automated grading. See the programming assignment for additional details.
Reproducibility
Due to security concerns with the exchange of R code, your code will not be run during the evaluation by your classmates. Please be sure that if they download the repo, they will be able to view the compiled HTML version of your analysis.
Load the training data into a data table.
library(data.table)
## Warning: package 'data.table' was built under R version 3.0.3
setInternet2(TRUE)
url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
D <- fread(url)
Load the testing data into a data table.
url <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
DTest <- fread(url)
Which variables in the test dataset have zero NA
s? Use this tip: finding columns with all missing values in r.
Belt, arm, dumbbell, and forearm variables that do not have any missing values in the test dataset will be predictor candidates.
isAnyMissing <- sapply(DTest, function (x) any(is.na(x) | x == ""))
isPredictor <- !isAnyMissing & grepl("belt|[^(fore)]arm|dumbbell|forearm", names(isAnyMissing))
predCandidates <- names(isAnyMissing)[isPredictor]
predCandidates
## [1] "roll_belt" "pitch_belt" "yaw_belt"
## [4] "total_accel_belt" "gyros_belt_x" "gyros_belt_y"
## [7] "gyros_belt_z" "accel_belt_x" "accel_belt_y"
## [10] "accel_belt_z" "magnet_belt_x" "magnet_belt_y"
## [13] "magnet_belt_z" "roll_arm" "pitch_arm"
## [16] "yaw_arm" "total_accel_arm" "gyros_arm_x"
## [19] "gyros_arm_y" "gyros_arm_z" "accel_arm_x"
## [22] "accel_arm_y" "accel_arm_z" "magnet_arm_x"
## [25] "magnet_arm_y" "magnet_arm_z" "roll_dumbbell"
## [28] "pitch_dumbbell" "yaw_dumbbell" "total_accel_dumbbell"
## [31] "gyros_dumbbell_x" "gyros_dumbbell_y" "gyros_dumbbell_z"
## [34] "accel_dumbbell_x" "accel_dumbbell_y" "accel_dumbbell_z"
## [37] "magnet_dumbbell_x" "magnet_dumbbell_y" "magnet_dumbbell_z"
## [40] "roll_forearm" "pitch_forearm" "yaw_forearm"
## [43] "total_accel_forearm" "gyros_forearm_x" "gyros_forearm_y"
## [46] "gyros_forearm_z" "accel_forearm_x" "accel_forearm_y"
## [49] "accel_forearm_z" "magnet_forearm_x" "magnet_forearm_y"
## [52] "magnet_forearm_z"
Subset the primary dataset to include only the predictor candidates and the outcome variable, classe
.
varToInclude <- c("classe", predCandidates)
D <- D[, varToInclude, with=FALSE]
dim(D)
## [1] 19622 53
names(D)
## [1] "classe" "roll_belt" "pitch_belt"
## [4] "yaw_belt" "total_accel_belt" "gyros_belt_x"
## [7] "gyros_belt_y" "gyros_belt_z" "accel_belt_x"
## [10] "accel_belt_y" "accel_belt_z" "magnet_belt_x"
## [13] "magnet_belt_y" "magnet_belt_z" "roll_arm"
## [16] "pitch_arm" "yaw_arm" "total_accel_arm"
## [19] "gyros_arm_x" "gyros_arm_y" "gyros_arm_z"
## [22] "accel_arm_x" "accel_arm_y" "accel_arm_z"
## [25] "magnet_arm_x" "magnet_arm_y" "magnet_arm_z"
## [28] "roll_dumbbell" "pitch_dumbbell" "yaw_dumbbell"
## [31] "total_accel_dumbbell" "gyros_dumbbell_x" "gyros_dumbbell_y"
## [34] "gyros_dumbbell_z" "accel_dumbbell_x" "accel_dumbbell_y"
## [37] "accel_dumbbell_z" "magnet_dumbbell_x" "magnet_dumbbell_y"
## [40] "magnet_dumbbell_z" "roll_forearm" "pitch_forearm"
## [43] "yaw_forearm" "total_accel_forearm" "gyros_forearm_x"
## [46] "gyros_forearm_y" "gyros_forearm_z" "accel_forearm_x"
## [49] "accel_forearm_y" "accel_forearm_z" "magnet_forearm_x"
## [52] "magnet_forearm_y" "magnet_forearm_z"
Make classe
into a factor.
D <- D[, classe := factor(D[, classe])]
D[, .N, classe]
## classe N
## 1: A 5580
## 2: B 3797
## 3: C 3422
## 4: D 3216
## 5: E 3607
Split the dataset into a 60% training and 40% probing dataset.
library(caret)
## Warning: package 'caret' was built under R version 3.0.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.0.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.0.3
seed <- as.numeric(as.Date("2014-10-26"))
set.seed(seed)
inTrain <- createDataPartition(D$classe, p=0.6)
DTrain <- D[inTrain[[1]]]
DProbe <- D[-inTrain[[1]]]
Preprocess the prediction variables by centering and scaling.
X <- DTrain[, predCandidates, with=FALSE]
preProc <- preProcess(X)
preProc
##
## Call:
## preProcess.default(x = X)
##
## Created from 11776 samples and 52 variables
## Pre-processing: centered, scaled
XCS <- predict(preProc, X)
DTrainCS <- data.table(data.frame(classe = DTrain[, classe], XCS))
Apply the centering and scaling to the probing dataset.
X <- DProbe[, predCandidates, with=FALSE]
XCS <- predict(preProc, X)
DProbeCS <- data.table(data.frame(classe = DProbe[, classe], XCS))
Check for near zero variance.
nzv <- nearZeroVar(DTrainCS, saveMetrics=TRUE)
if (any(nzv$nzv)) nzv else message("No variables with near zero variance")
## No variables with near zero variance
Examine groups of prediction variables.
histGroup <- function (data, regex) {
col <- grep(regex, names(data))
col <- c(col, which(names(data) == "classe"))
library(reshape2)
n <- nrow(data)
DMelted <- melt(data[, col, with=FALSE][, rownum := seq(1, n)], id.vars=c("rownum", "classe"))
library(ggplot2)
ggplot(DMelted, aes(x=classe, y=value)) +
geom_violin(aes(color=classe, fill=classe), alpha=1/2) +
# geom_jitter(aes(color=classe, fill=classe), alpha=1/10) +
# geom_smooth(aes(group=1), method="gam", color="black", alpha=1/2, size=2) +
facet_wrap(~ variable, scale="free_y") +
scale_color_brewer(palette="Spectral") +
scale_fill_brewer(palette="Spectral") +
labs(x="", y="") +
theme(legend.position="none")
}
histGroup(DTrainCS, "belt")
## Warning: package 'reshape2' was built under R version 3.0.3
histGroup(DTrainCS, "[^(fore)]arm")
histGroup(DTrainCS, "dumbbell")
histGroup(DTrainCS, "forearm")
Using random forest, the out of sample error should be small. The error will be estimated using the 40% probing sample. I would be quite happy with an error estimate of 3% or less.
Set up the parallel clusters.
library(parallel)
library(doParallel)
## Warning: package 'doParallel' was built under R version 3.0.3
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.0.3
## Loading required package: iterators
## Warning: package 'iterators' was built under R version 3.0.3
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
Set the control parameters.
ctrl <- trainControl(classProbs=TRUE,
savePredictions=TRUE,
allowParallel=TRUE)
Fit model over the tuning parameters.
method <- "rf"
system.time(trainingModel <- train(classe ~ ., data=DTrainCS, method=method))
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 3.0.3
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
## Loading required namespace: e1071
## user system elapsed
## 46.86 0.39 1102.53
Stop the clusters.
stopCluster(cl)
trainingModel
## Random Forest
##
## 11776 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
##
## Summary of sample sizes: 11776, 11776, 11776, 11776, 11776, 11776, ...
##
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa Accuracy SD Kappa SD
## 2 0.986 0.982 0.00163 0.00206
## 27 0.987 0.984 0.00158 0.00200
## 52 0.977 0.971 0.00438 0.00555
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
hat <- predict(trainingModel, DTrainCS)
confusionMatrix(hat, DTrain[, classe])
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 3348 0 0 0 0
## B 0 2279 0 0 0
## C 0 0 2054 0 0
## D 0 0 0 1930 0
## E 0 0 0 0 2165
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9997, 1)
## No Information Rate : 0.2843
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Prevalence 0.2843 0.1935 0.1744 0.1639 0.1838
## Detection Rate 0.2843 0.1935 0.1744 0.1639 0.1838
## Detection Prevalence 0.2843 0.1935 0.1744 0.1639 0.1838
## Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000
hat <- predict(trainingModel, DProbeCS)
confusionMatrix(hat, DProbeCS[, classe])
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 2230 16 0 0 0
## B 1 1498 6 2 2
## C 0 4 1353 18 7
## D 0 0 9 1265 7
## E 1 0 0 1 1426
##
## Overall Statistics
##
## Accuracy : 0.9906
## 95% CI : (0.9882, 0.9926)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9881
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9991 0.9868 0.9890 0.9837 0.9889
## Specificity 0.9971 0.9983 0.9955 0.9976 0.9997
## Pos Pred Value 0.9929 0.9927 0.9790 0.9875 0.9986
## Neg Pred Value 0.9996 0.9968 0.9977 0.9968 0.9975
## Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Detection Rate 0.2842 0.1909 0.1724 0.1612 0.1817
## Detection Prevalence 0.2863 0.1923 0.1761 0.1633 0.1820
## Balanced Accuracy 0.9981 0.9925 0.9923 0.9906 0.9943
varImp(trainingModel)
## rf variable importance
##
## only 20 most important variables shown (out of 52)
##
## Overall
## roll_belt 100.000
## pitch_forearm 59.809
## yaw_belt 54.351
## pitch_belt 45.919
## magnet_dumbbell_z 43.763
## roll_forearm 43.518
## magnet_dumbbell_y 43.318
## accel_dumbbell_y 22.405
## roll_dumbbell 18.299
## magnet_dumbbell_x 17.987
## accel_forearm_x 17.502
## accel_belt_z 14.588
## magnet_belt_z 14.427
## accel_dumbbell_z 13.935
## magnet_forearm_z 13.907
## total_accel_dumbbell 13.199
## magnet_belt_y 12.330
## yaw_arm 11.810
## gyros_belt_z 11.176
## magnet_belt_x 9.191
trainingModel$finalModel
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 27
##
## OOB estimate of error rate: 0.79%
## Confusion matrix:
## A B C D E class.error
## A 3341 5 2 0 0 0.002090800
## B 16 2255 7 1 0 0.010530935
## C 0 10 2037 7 0 0.008276534
## D 0 1 27 1899 3 0.016062176
## E 1 2 2 9 2151 0.006466513
The estimated error rate is less than 1%.
Save training model object for later.
save(trainingModel, file="trainingModel.RData")
Load the training model.
load(file="trainingModel.RData", verbose=TRUE)
## Loading objects:
## trainingModel
Get predictions and evaluate.
DTestCS <- predict(preProc, DTest[, predCandidates, with=FALSE])
hat <- predict(trainingModel, DTestCS)
DTest <- cbind(hat , DTest)
subset(DTest, select=names(DTest)[grep("belt|[^(fore)]arm|dumbbell|forearm", names(DTest), invert=TRUE)])
## hat V1 user_name raw_timestamp_part_1 raw_timestamp_part_2
## 1: B 1 pedro 1323095002 868349
## 2: A 2 jeremy 1322673067 778725
## 3: B 3 jeremy 1322673075 342967
## 4: A 4 adelmo 1322832789 560311
## 5: A 5 eurico 1322489635 814776
## 6: E 6 jeremy 1322673149 510661
## 7: D 7 jeremy 1322673128 766645
## 8: B 8 jeremy 1322673076 54671
## 9: A 9 carlitos 1323084240 916313
## 10: A 10 charles 1322837822 384285
## 11: B 11 carlitos 1323084277 36553
## 12: C 12 jeremy 1322673101 442731
## 13: B 13 eurico 1322489661 298656
## 14: A 14 jeremy 1322673043 178652
## 15: E 15 jeremy 1322673156 550750
## 16: E 16 eurico 1322489713 706637
## 17: A 17 pedro 1323094971 920315
## 18: B 18 carlitos 1323084285 176314
## 19: B 19 pedro 1323094999 828379
## 20: B 20 eurico 1322489658 106658
## cvtd_timestamp new_window num_window problem_id
## 1: 05/12/2011 14:23 no 74 1
## 2: 30/11/2011 17:11 no 431 2
## 3: 30/11/2011 17:11 no 439 3
## 4: 02/12/2011 13:33 no 194 4
## 5: 28/11/2011 14:13 no 235 5
## 6: 30/11/2011 17:12 no 504 6
## 7: 30/11/2011 17:12 no 485 7
## 8: 30/11/2011 17:11 no 440 8
## 9: 05/12/2011 11:24 no 323 9
## 10: 02/12/2011 14:57 no 664 10
## 11: 05/12/2011 11:24 no 859 11
## 12: 30/11/2011 17:11 no 461 12
## 13: 28/11/2011 14:14 no 257 13
## 14: 30/11/2011 17:10 no 408 14
## 15: 30/11/2011 17:12 no 779 15
## 16: 28/11/2011 14:15 no 302 16
## 17: 05/12/2011 14:22 no 48 17
## 18: 05/12/2011 11:24 no 361 18
## 19: 05/12/2011 14:23 no 72 19
## 20: 28/11/2011 14:14 no 255 20
Write submission files to predictionAssignment_files/answers
.
pml_write_files = function(x){
n = length(x)
path <- "predictionAssignment_files/answers"
for(i in 1:n){
filename = paste0("problem_id_",i,".txt")
write.table(x[i],file=file.path(path, filename),quote=FALSE,row.names=FALSE,col.names=FALSE)
}
}
pml_write_files(hat)